martes, 10 de diciembre de 2013

IMANES

IMANES

Un imán es un material capaz de producir un campo magnético exterior y atraer el hierro (también puede atraer al cobalto y al níquel). Los imanes que manifiestan sus propiedades de forma permanente pueden ser naturales, como la magnetita (Fe3O4) oartificiales, obtenidos a partir de aleaciones de diferentes metales. Podemos decir que un imánpermanente es aquel que conserva el magnetismo después de haber sido imantado. Un imán temporalno conserva su magnetismo tras haber sido imantado.


En un imán la capacidad de atracción es mayor en sus extremos o polos. Estos polos se denominan norte y sur, debido a que tienden a orientarse según los polos geográficos de la Tierra, que es un gigantesco imán natural.

Tipos de Imanes

Según su Origen

MANES NATURALES: se refiere a minerales naturales, los cuales tienen la propiedad de atraer elementos como el hierro, el níquel, etc.
La magnetita es un imán de este tipo, compuesto por óxido ferroso férrico, cuya particularidad principal consiste en atraer fragmentos de hierro natural.


IMANES ARTIFICIALES: esta denominación recae sobre aquellos cuerpos magnéticos que, tras friccionarlos con magnetita se transforman de manera artificial en imanes.
Según la perduración de sus propiedades magnéticas.


IMANES TEMPORALES: los imanes temporales están conformados por hierro dulce y se caracterizan por poseer una atracción magnética de corta duración.


IMANES PERMANENTES: con este término se alude a aquellos imanes constituidos por acero, los cuales conservan la propiedad magnética por un tiempo perdurable.


IMANES CERÁMICOS O FERRITAS. Esta clase de imanes tiene un aspecto liso y color grisáceo. Suelen ser de los más utilizados debido a su maleabilidad. Aunque, por otro lado, al ser frágiles, corren el riesgo de romperse con facilidad.


IMANES DE ALNICO: el nombre deriva de una contracción de las palabras: aluminio, níquel y cobalto, elementos de los que se compone. Esta clase de imanes presentan un buen comportamiento frente a la presencia de altas temperaturas, sin embargo, no cuentan con considerable fuerza.


IMANES DE TIERRAS RARAS: esta clase de imanes se subdividen en dos categorías de acuerdo almaterial químico del que se compone:
Neodimio: están formados por hierro, neodimio y boro. Presentan una oxidación fácil, y se utilizan en aquellos casos donde las temperaturas no alcanzan los 80º C.
Samario cobalto: no suelen oxidarse de manera fácil, aunque el precio al que cotizan es muy elevado.


IMANES FLEXIBLES: como su nombre lo indica, estos imanes poseen una gran flexibilidad. Están compuestos por partículas magnéticas como el estroncio y el hierro. Las desventajas de los imanes flexibles son la baja resistencia a la oxidación y su escasa potencia magnética.

Electro-iman

Un electroimán es un tipo de imán en el que el campo magnético se produce mediante el flujo de una corriente eléctrica, desapareciendo en cuanto cesa dicha corriente.


El tipo más simple de electroimán es un trozo de alambre enrollado. Una bobina con forma de tubo recto (parecido a un tornillo) se llama solenoide, y cuando además se curva de forma que los extremos coincidan se denomina toroide. Pueden producirse campos magnéticos mucho más fuertes si se sitúa un «núcleo» de material paramagnético oferromagnético (normalmente hierro dulce o ferrita, aunque también se utiliza el llamadoacero eléctrico) dentro de la bobina. El núcleo concentra el campo magnético, que puede entonces ser mucho más fuerte que el de la propia bobina.

Los campos magnéticos generados por bobinas se orientan según la regla de la mano derecha. Si los dedos de la mano derecha se cierran en torno a la dirección del campo magnético B, el pulgar indica la dirección de la corriente I. El lado del electro imán del que salen las líneas de campo se define como «polo norte».
Además, dentro de la bobina se crean corrientes inducidas cuando ésta está sometida a un flujo variable. Estas corrientes son llamadas corrientes de Foucault y en general son indeseables, puesto que calientan el núcleo y provocan una pérdida de potencia de si mismo.

IMANES NATURALES

Tienen la propiedad de atraer todas las sustancias magnéticas. Su característica de atraer hierros es natural & no es influida por los seres humanos.
Están compuestos por el oxido de hierro son aquellos que se encuentran en la Tierra y que atraen al hierro. Denominados magnetita , hoy sabemos que es hierro cristalino Fe3O4. Pero también la Tierra es un imán natural.


PROPIEDADES

Los imanes poseen dos zonas en las que se concentra la fuerza que ejercen, estas zonas son los extremos del imán y reciben el nombre de polos magnéticos, norte y sur. Los polos del mismo nombre se repelen y los polos opuestos se atraen. Compruébalo.


LEYES MAGNÉTICAS

Así como un conductor al que se le hace pasar corriente genera un campo magnético, del mismo modo un imán puede generar una corriente eléctrica. Este fenómeno no se conoce como inducción electromagnética y se estudia a través de las leyes de Faraday y Lenz.


Faraday descubrió que se producen corrientes eléctricas cuando el efecto magnético cambia. Cuanto mayor sea el cambio del flujo, mayor será el valor de la corriente eléctrica que se induzca en el alambre conductor. La corriente eléctrica generada por el efecto de un campo magnético variable se denomina corriente inducida.




Si a una espira que esta conectada a un medidor de corriente eléctrica, como un galvanómetro, se le acerca o aleja un imán el galvanómetro indicara una lectura positiva o negativa de acuerdo con el movimiento del imán Los mismo sucede si el imán se queda quieto y la bobina se mueve. Pero si deja de moverse alguno, el galvanómetro no indica ningún valor. Se dice que se induce una fuerza electromotriz (FEM), que será mas intensa al avanzar o mover mas rápido el imán hacia el.


LINEAS DE FUERZA MAGNÉTICA



Deseasen hace un siglo el inglés Michael Faraday estudio los efectos producidos por los imanes. Observo que un imán permanente y crece la fuerza sobre un trozo de hierro o sobre cualquier imán cercano, debido a la presencia de un campo de fuerzas cuyos efectos se pueden sentir a través del espacio vacío. Faraday imaginó que un imán salían y lo hacen crisis parecían, a éstos los llamó líneas de fuerza magnética. Estas líneas encuentran los polos pues ahí es mayor la intensidad. Estas líneas esparcen desde el polo norte y se curvan para entrar al sur.


LEY DE LOS POLOS

Esta ley también es conocida como: " la ley de Faraday ", la cual enuncia lo siguiente:


“Polos opuestos se atraen, polos iguales se rechazan”
Lo que nos da a entender, es que si ponemos, polo positivo con polo positivo se rechazarán, sin embargo si ponemos polo negativo con polo positivo se atraerán.


LEY DE COULOMB

" La fuerza atracción o repulsión entre dos cargas puntuales es directamente proporcional al producto de las dos cargas inversamente proporcional al cuadrado de la distancia que separa"


Esto quiere decir que si la distancia entre dos objetos cargados se reduce la mitad, la fuerza de atracción o repulsión entre ellos se cuadruplicará.


TEORÍA MOLECULAR DEL MAGNETISMO

Esta teoría es la de Weber que dice que las moléculas de las sustancias magnéticas son pequeños imanes que, cuando están en estado natural, se encuentran en desorden, sin manifestar ningún magnetismo, pero que al imantarse se orientan en la dirección norte - sur.


COMPORTAMIENTO MAGNÉTICO DE LOS MATERIALES

Ferromagnéticos.- son los materiales por los cuales las líneas de flujo magnético fluyen con mayor facilidad a través del cuerpo que por el vacío. Este material se magnetizará con gran intensidad. Su permeabilidad magnética será muy elevada y quedará comprendido desde algunos cientos a miles de veces la permeabilidad del vacío. Ejemplos: hierro, cobalto, níkel, así como sus aleaciones.


Paramagnéticos.- son los materiales por los cuales las líneas del flujo más lo que pasan con más libertad que a través del vacío. Este material se magnetiza, aunque no en forma muy intensa. Su permeabilidad magnética es ligeramente mayor que la del vacío. Ejemplos: aluminio, litio, platino, iridio y cloruro férrico.


Diamagnético.- este tipo de material hace que las líneas de flujo magnético circulen más fácilmente en el vacío que por el cuerpo. Este material no se magnetiza y puede ser repelido débilmente por un campo magnético intenso. Su permeabilidad magnética relativa es menor a la unidad. Ejemplos: el cobre, plata, oro, mercurio y bismuto.


PERMEABILIDAD MAGNÉTICA E INTENSIDAD DE CAMPO MAGNÉTICO

Permeabilidad magnética: fenómeno presente en algunos materiales, como hierro dulce, en los cuales las líneas de fuerza de un campo magnético pasan con mayor facilidad a través del material de hierro que por el aire o el vacío. Esto provoca que cuando material permeable se colocan un campo magnético, concentre un mayor número de líneas de flujo por unidad diaria y aumente el valor de la densidad del flujo magnético.


La permeabilidad magnética de diferentes medios se representa con la letra griega (mu). La permeabilidad magnética del vacío para fines prácticos se considera igual a la permeabilidad del aire.


La permeabilidad atlética del vacío 0 tiene un valor en el SI de:


0 = 4 x 10-7 Wb/Am = 4 x 10-7 Tm/A


En el caso de aquellas sustancias que prácticamente no se imantan, el valor de su permeabilidad relativa es menor de 1. Los materiales que sin ser ferromagnéticos logran imantar tienen permeabilidad relativa ligeramente mayor a la unidad.


INTENSIDAD DEL CAMPO MAGNÉTICO

Para un allegado, el rector intensidad del campo magnético es el cociente que resulta de la densidad del flujo magnético entre la permeabilidad magnética del medio:


H= B por lo tanto B = H


Donde: H = intensidad del campo magnético para un medio dado, se mide en A/M.


B = densidad del flujo magnético, se expresa en teslas (T)


= permeabilidad magnética del medio, sumida es el tesla metro/A


INDUCCIÓN MAGNÉTICA

Si un gran número de dominios se orientan en esa dirección, el material mostrará fuertes propiedades magnéticas.


Esta teoría explica muchos efectos magnéticos observados en la materia. Por ejemplo, una barra de hierro no magnetizada se puede trasformar en un imán simplemente sosteniendo otro imán cerca de ella.


DENSIDAD DE FLUJO MAGNÉTICO

El concepto propuesto por Faraday acerca de las líneas de fuerza, es imaginario, pero resulta muy útil para dibujar los campos magnéticos y cuantificar sus efectos.


Una sola línea de fuerza equivale a la unidad del flujo magnético en el sistema CGS y recibe el nombre de Maxwell. Esta unidad es muy pequeña, por lo tanto en el SI se utiliza el weber.


1 weber = 1x108 maxwells


Un flujo magnético que atraviesa perpendicularmente una unidad de área A recibe el nombre de densidad de flujo magnético o inducción magnética.


Por definición: la densidad del flujo magnético en una región de un campo magnético equivale al número de líneas de fuerza que atraviesan perpendicularmente ala unidad de área. Matemáticamente se expresa:


B = por lo tanto = BA


A


B = Densidad del flujo magnético


= Flujo magnético


A = área sobre la que actúa el flujo magnético.


LEY DE LENZ

El fisico ruso Heinrich Lenz (1804-1865) enunció una ley sobre inducción magnética que lleva su nombre:


Siempre que se induce una fem, la corriente inducida tiene un sentido tal que tiende a oponerse a la causa que lo produce.


De acuerdo con la ley, el sentido de la corriente inducida es contrario ante la corriente requerida para provocar el movimiento del campo magnético que la ha engendrado.


LEY DE FARADAY

Con base en sus experimentos, Faraday enuncia la ley del electromagnetismo: la fem inducida en los circuitos formados por un conductor, una bobina es directamente proporcional al número de líneas de fuerza magnética cortadas en un segundo.


Esta ley se expresa matemáticamente como:


E = - f - i


T


Donde E = fem media


f = flujo magnético final


i = flujo magnético inicial


T = tiempo en que se realiza la variación de flujo en segundos

MOTOR ELÉCTRICO

El motor eléctrico es un aparato que convierte la energía eléctrica en energía mecánica. Un motor de corriente continua o directa está constituido por una bobina suspendida entre los polos de un imán pronto a circular una corriente eléctrica en la bobina, esta adquiere un campo magnético y actúa con un imán, por tanto, es desplazada en movimientos de rotación, debido a la fuerza que hay entre los campos magnéticos. El motor de corriente alterna de inducción es el más empleado gracias a su bajo costo de mantenimiento. En general, todo motor eléctrico consta de dos partes principales: electro imán pues suele ser fijo y el circuito eléctrico que puede girar alrededor de un eje.


TRANSFORMADOR

El transformador funciona por inducción magnética. Utiliza corriente alterna. Como ya sabemos este tipo de corriente pueda aumentar o disminuir su voltaje fácilmente mediante un transformador. Éste eleva el voltaje de la corriente en las plantas generadoras de energía eléctrica y después lo reduce en los centros de consumo.


El principio del transformador se basa en inducción mutua.

GENERADOR ELÉCTRICO

El generador eléctrico es un aparato transformador energía mecánica en energía eléctrica. Está constituido por un inductor elaborado base de electro imanes e imanes permanentes que producen un campo magnético y por un inducido que consta de un núcleo de hierro al cual se le enrolla alambre conductor previamente aislado. Cuando se le comunica al inducido un movimiento de rotación, los alambres conductores cortan las líneas de flujo magnético, por tanto, se induce en ellas una fem.


En la mayoría de los generadores de la corriente continua el inductor que produce el campo magnético es fijo y el inducido móvil.


BOBINA

Existen dos tipos de bobinas:


Bobina primaria: es la que está conectada a la fuente de voltaje de CA.


Bobina Secundaria: aquella donde la corriente es inducida.


Una bobina es un alambre enrollado en forma de espiral.

martes, 29 de octubre de 2013

Electricidad

Carga eléctrica

La carga eléctrica es una propiedad física intrínseca de algunas partículas subatómicas que se manifiesta mediante fuerzas de atracción y repulsión entre ellas. La materia cargada eléctricamente es influida por los campos electromagnéticos, siendo a su vez, generadora de ellos. La denominada interacción electromagnética entre carga y campo eléctrico es una de las cuatro interacciones fundamentales de la física. Desde el punto de vista del modelo estándar la carga eléctrica es una medida de la capacidad que posee una partícula para intercambiar fotones.

Una de las principales características de la carga eléctrica es que, en cualquier proceso físico, la carga total de un sistema aislado siempre se conserva. Es decir, la suma algebraica de las cargas positivas y negativas no varía en el tiempo. Qi=Qf


Campo Electrico

El campo eléctrico es un campo físico que es representado mediante un modelo que describe la interacción entre cuerpos y sistemas con propiedades de naturaleza eléctrica.1 Se describe como un campo vectorial en el cual una carga eléctrica puntual de valor q sufre los efectos de una fuerza eléctrica \vec F dada por la siguiente ecuación:
\vec F = q \vec E
En los modelos relativistas actuales, el campo eléctrico se incorpora, junto con el campo magnético, en campo tensorial cuadridimensional, denominado campo electromagnético Fμν.2
Los campos eléctricos pueden tener su origen tanto en cargas eléctricas como en campos magnéticos variables. Las primeras descripciones de los fenómenos eléctricos, como la ley de Coulomb, sólo tenían en cuenta las cargas eléctricas, pero las investigaciones de Michael Faraday y los estudios posteriores de James Clerk Maxwell permitieron establecer las leyes completas en las que también se tiene en cuenta la variación del campo magnético.
Esta definición general indica que el campo no es directamente medible, sino que lo que es observable es su efecto sobre alguna carga colocada en su seno. La idea de campo eléctrico fue propuesta por Faraday al demostrar el principio de inducción electromagnética en el año 1832.

Potencial Electrico

El potencial eléctrico o potencial electrostático en un punto, es el trabajo que debe realizar un campo electrostático para mover una carga positiva q desde dicho punto hasta el punto de referencia,1 dividido por unidad de carga de prueba. Dicho de otra forma, es el trabajo que debe realizar una fuerza externa para traer una carga positiva unitaria q desde el punto de referencia hasta el punto considerado en contra de la fuerza eléctrica. Matemáticamente se expresa por: V = \frac{W}{q} \,\!
El potencial eléctrico sólo se puede definir para un campo estático producido por cargas que ocupan una región finita del espacio. Para cargas en movimiento debe recurrirse a los potenciales de Liénard-Wiechert para representar un campo electromagnético que además incorpore el efecto de retardo, ya que las perturbaciones del campo eléctrico no se pueden propagar más rápido que la velocidad de la luz. Si se considera que las cargas están fuera de dicho campo, la carga no cuenta con energía y el potencial eléctrico equivale al trabajo necesario para llevar la carga desde el exterior del campo hasta el punto considerado. La unidad del Sistema Internacional es el voltio (V). Todos los puntos de un campo eléctrico que tienen el mismo potencial forman una superficie equipotencial. Una forma alternativa de ver al potencial eléctrico es que a diferencia de la energía potencial eléctrica o electrostática, él caracteriza sólo una región del espacio sin tomar en cuenta la carga que se coloca allí.

Capacitancia Electrica

En electromagnetismo y electrónica, la capacitancia1 o capacidad eléctrica es la propiedad que tienen los cuerpos para mantener una carga eléctrica. La capacitancia también es una medida de la cantidad de energía eléctrica almacenada para una diferencia de potencial eléctrico dada. El dispositivo más común que almacena energía de esta forma es el condensador. La relación entre la diferencia de potencial (o tensión) existente entre las placas del condensador y la carga eléctrica almacenada en éste, se describe mediante la siguiente 

expresión matemática:


donde:
es la capacidad, medida en faradios (en honor al físico experimental Michael Faraday); esta unidad es relativamente grande y suelen utilizarse submúltiplos como el microfaradio o picofaradio.
es la carga eléctrica almacenada, medida en culombios;
es la diferencia de potencial (o tensión), medida en voltios.


Cabe destacar que la capacidad es siempre una cantidad positiva y que depende de la geometría del condensador considerado (de placas paralelas, cilíndrico, esférico). Otro factor del que depende es del dieléctrico que se introduzca entre las dos superficies del condensador. Cuanto mayor sea la constante dieléctrica del material no conductor introducido, mayor es la capacidad.


En la práctica, la dinámica eléctrica del condensador se expresa gracias a la siguiente ecuación diferencial, que se obtiene derivando respecto al tiempo la ecuación anterior.

 {i} = \frac {dQ}{dt} = {C} \frac {dV}{dt}
Donde i representa la corriente eléctrica, medida en amperios.

Corriente Eléctrica

La corriente eléctrica o intensidad eléctrica es el flujo de carga eléctrica por unidad de tiempo que recorre un material. 1 Se debe al movimiento de las cargas (normalmente electrones) en el interior del material. En el Sistema Internacional de Unidades se expresa en C/s (culombios sobre segundo), unidad que se denomina amperio. Una corriente eléctrica, puesto que se trata de un movimiento de cargas, produce un campo magnético, un fenómeno que puede aprovecharse en el electroimán.
El instrumento usado para medir la intensidad de la corriente eléctrica es el galvanómetro que, calibrado en amperios, se llama amperímetro, colocado en serie con el conductor cuya intensidad se desea medir.

Corriente Continua

Se denomina corriente continua o corriente directa(CC en español, en inglés DC, de Direct Current) al flujo de cargas eléctricas que no cambia de sentido con el tiempo. La corriente eléctrica a través de un material se establece entre dos puntos de distinto potencial. Cuando hay corriente continua, los terminales de mayor y menor potencial no se intercambian entre sí. Es errónea la identificación de la corriente continua con la corriente constante (ninguna lo es, ni siquiera la suministrada por una batería). Es continua toda corriente cuyo sentido de circulación es siempre el mismo, independientemente de su valor absoluto.
Su descubrimiento se remonta a la invención de la primera pila voltaica por parte del conde y científico italiano Alessandro Volta. No fue hasta los trabajos de Edison sobre la generación de electricidad, en las postrimerías del siglo XIX, cuando la corriente continua comenzó a emplearse para la transmisión de la energía eléctrica. Ya en el siglo XX este uso decayó en favor de la corriente alterna, que presenta menores pérdidas en la transmisión a largas distancias, si bien se conserva en la conexión de redes eléctricas de diferentes frecuencias y en la transmisión a través de cables submarinos.

Corriente Alterna

Se denomina corriente alterna (simbolizada CA en español y AC en inglés, de Alternating Current) a la corriente eléctrica en la que la magnitud y dirección varían cíclicamente. La forma de onda de la corriente alterna más comúnmente utilizada es la de una onda sinoidal.3 En el uso coloquial, "corriente alterna" se refiere a la forma en la cual la electricidad llega a los hogares y a las empresas.
El sistema usado hoy en día fue ideado fundamentalmente por Nikola Tesla, y la distribución de la corriente alterna fue comercializada por George Westinghouse. Otros que contribuyeron al desarrollo y mejora de este sistema fueron Lucien Gaulard, John Gibbs y Oliver Shallenger entre los años 1881 y 1889. La corriente alterna superó las limitaciones que aparecían al emplear la corriente continua (CC), la cual constituye un sistema ineficiente para la distribución de energía a gran escala debido a problemas en la transmisión de potencia.
La razón del amplio uso de la corriente alterna, que minimiza los problemas de trasmisión de potencia, viene determinada por su facilidad de transformación, cualidad de la que carece la corriente continua. La energía eléctrica trasmitida viene dada por el producto de la tensión, la intensidad y el tiempo. Dado que la sección de los conductores de las líneas de transporte de energía eléctrica depende de la intensidad, se puede, mediante un transformador, modificar el voltaje hasta altos valores (alta tensión), disminuyendo en igual proporción la intensidad de corriente. Esto permite que los conductores sean de menor sección y, por tanto, de menor costo; además, minimiza las pérdidas por efecto Joule, que dependen del cuadrado de la intensidad. Una vez en el punto de consumo o en sus cercanías, el voltaje puede ser de nuevo reducido para permitir su uso industrial o doméstico de forma cómoda y segura. 

Ley de OHM

La ley de Ohm dice que la intensidad de la corriente que circula entre dos puntos de un circuito eléctrico es proporcional a la tensión eléctrica entre dichos puntos. Esta constante es la conductancia eléctrica, que es la inversa de la resistencia eléctrica.
La intensidad de corriente que circula por un circuito dado es directamente proporcional a la tensión aplicada e inversamente proporcional a la resistencia del mismo. Cabe recordar que esta ley es una propiedad específica de ciertos materiales y no es una ley general del electromagnetismo como la ley de Gauss, por ejemplo.

La ecuación matemática que describe esta relación es:

 I=  {G} {V} = \frac{V}{R}
Donde, I es la corriente que pasa a través del objeto en amperios, V es la diferencia de potencial de las terminales del objeto en voltios, G es la conductancia en siemens y R es la resistencia en ohmios (Ω). Específicamente, la ley de Ohm dice que R en esta relación es constante, independientemente de la corriente.1
Esta ley tiene el nombre del físico alemán Georg Ohm, que en un tratado publicado en 1827, halló valores de tensión y corriente que pasaba a través de unos circuitos eléctricos simples que contenían una gran cantidad de cables. Él presentó una ecuación un poco más compleja que la mencionada anteriormente para explicar sus resultados experimentales. La ecuación de arriba es la forma moderna de la ley de Ohm.
Esta ley se cumple para circuitos y tramos de circuitos pasivos que, o bien no tienen cargas inductivas ni capacitivas (únicamente tiene cargas resistivas), o bien han alcanzado un régimen permanente (véase también «Circuito RLC» y «Régimen transitorio (electrónica)»). También debe tenerse en cuenta que el valor de la resistencia de un conductor puede ser influido por la temperatura.

Cicuito paralelo

El circuito eléctrico en paralelo es una conexión donde los puertos de entrada de todos los dispositivos (generadores, resistencias, condensadores, etc.) conectados coincidan entre sí, lo mismo que sus terminales de salida.
Siguiendo un símil hidráulico, dos tinacos de agua conectados en paralelo tendrán una entrada común que alimentará simultáneamente a ambos, así como una salida común que drenará a ambos a la vez. Las bombillas de iluminación de una casa forman un circuito en paralelo, gastando así menos energía.
En función de los dispositivos conectados en paralelo, el valor total o equivalente se obtiene con las siguientes expresiones
  • Para generadores
TE Conex 05.svgTE Compon 07.svgTE Conex 09.svg
TE Conex 07.svgTE Compon 07.svgTE Conex 11.svg
TE Conex 14.svgTE Compon 07.svgTE Conex 14.svg
TE Conex 05.svgTE Compon 05.svgTE Conex 09.svg
TE Conex 07.svgTE Compon 05.svgTE Conex 11.svg
TE Conex 14.svgTE Compon 05.svgTE Conex 14.svg

   {V_{T}} = {V_1} = {V_2} = ... = {V_n}\,

   {I_{T}} = {I_1} + {I_2} + ... + {I_n}\,

  • Tambien Para Resistencias
TE Conex 05.svgTE Compon 01.svgTE Conex 09.svg
TE Conex 07.svgTE Compon 01.svgTE Conex 11.svg
TE Conex 14.svgTE Compon 01.svgTE Conex 14.svg

   {1 \over R_{T}} = {1 \over R_1} + {1 \over R_2} + ... + {1 \over R_n}\,

  • Para Condensadores
TE Conex 05.svgTE Compon 04.svgTE Conex 09.svg
TE Conex 07.svgTE Compon 04.svgTE Conex 11.svg
TE Conex 14.svgTE Compon 04.svgTE Conex 14.svg

   {C_{T}} = {C_1} + {C_2} + ... + {C_n}\,

  • Para Interruptores
TE Conex 05.svgTE Interu 1A.svgTE Conex 09.svg
TE Conex 07.svgTE Interu 1B.svgTE Conex 11.svg
TE Conex 14.svgTE Interu 1C.svgTE Conex 14.svg
Interruptor AInterruptor BInterruptor CSalida
AbiertoAbiertoAbiertoAbierto
AbiertoAbiertoCerradoCerrado
AbiertoCerradoAbiertoCerrado
AbiertoCerradoCerradoCerrado
CerradoAbiertoAbiertoCerrado
CerradoAbiertoCerradoCerrado
CerradoCerradoAbiertoCerrado
CerradoCerradoCerradoCerrado

Cicuito en Serie

Un circuito en serie es una configuración de conexión en la que los bornes o terminales de los dispositivos están unidos para un solo circuito (generadores, resistencias, condensadores,interruptores, entre otros.) se conectan secuencialmente. La terminal de salida del dispositivo uno se conecta a la terminal de entrada del dispositivo siguiente.
Siguiendo un símil hidráulico, dos depósitos de agua se conectarán en serie si la salida del primero se conecta a la entrada del segundo. Una batería eléctrica suele estar formada por varias pilas eléctricas conectadas en serie, para alcanzar así el voltaje que se precise.
En función de los dispositivos conectados en serie, el valor total o equivalente se obtiene con las siguientes expresiones:
  • Para Generadores (pilas)
TE Compon 07.svgTE Compon 07.svgTE Compon 07.svg
TE Compon 05.svgTE Compon 05.svgTE Compon 05.svg

   {V_{T}} = {V_1} + {V_2} + ... + {V_n}\,

   {I_{T}} = {I_1} = {I_2} = ... = {I_n}\,

  • Para Resistencias
TE Compon 01.svgTE Compon 01.svgTE Compon 01.svg

   {R_{T}} = {R_1} + {R_2} + ... + {R_n}\,

  • Para Condensadores
TE Compon 04.svgTE Compon 04.svgTE Compon 04.svg

   {1 \over C_{T}} = {1 \over C_1} + {1 \over C_2} + ... + {1 \over C_n}\,

  • Para Interruptores
TE Interu 1A.svgTE Interu 1B.svgTE Interu 1C.svg
Interruptor AInterruptor BInterruptor CSalida
AbiertoAbiertoAbiertoAbierto
AbiertoAbiertoCerradoAbierto
AbiertoCerradoAbiertoAbierto
AbiertoCerradoCerradoAbierto
CerradoAbiertoAbiertoAbierto
CerradoAbiertoCerradoAbierto
CerradoCerradoAbiertoAbierto
CerradoCerradoCerradoCerrado

Otra configuración posible, para la disposición de componentes eléctricos, es el circuito en paralelo. En el cual, los valores equivalentes se calculan de forma inversa al circuito en serie.
Es importante conocer que para realizar la suma de las magnitudes, solo en corriente alterna, se debe hacer en forma fasorial (vectorial), para ser sumadas en forma de módulo, cada rama debe tener como máximo un elemento.